Жить в космосе можно лишь полторы минуты

Опасность остаться навсегда

Впервые с этой опасностью столкнулся наш соотечественник Алексей Архипович Леонов во время первого в истории человечества выхода в открытый космос 18 марта 1965 года. Инженеры не учли, что в условиях космического вакуума скафандр космонавта заметно увеличится в объеме. В итоге Леонов просто не мог протиснуться в люк. Однако космонавт не растерялся, и принял единственно верное в данной ситуации решение: стравил часть воздуха. Скафандр стал меньше, и Леонову удалось вернуться на корабль. Правда, для этого пришлось приложить физические усилия и протискиваться ногами вперед, в нарушение всех инструкций.

С проблемой возвращения на корабль столкнулся и американец Эд Уайт в том же 1965-м году. Одну из пружин люка заклинило и Уайт несколько минут не мог зафиксировать его в закрытом положении. В это время командир корабля Джеймс МакДивитт получил с Земли инструкции по действию в чрезвычайной ситуации — если у Уайта закончится кислород и он потеряет сознание. Земля требовала перерезать трос Уайта…

Каждый космонавт, покидая корабль или космическую станцию, прикрепляет себя тросом, чтобы иметь возможность вернуться назад. У космонавта есть реактивный ранец, с помощью которого он может быстро передвигаться и, в случае необходимости, вернуться на борт, но без пуповины, связывающей человека с кораблем, нахождение снаружи никто не мыслит. Космос огромен и человек, оставшийся наедине с ним, это даже не песчинка в пустыне Сахара, а нечто гораздо меньшее.

Ни один человек не потерялся в открытом космосе, однако, именно этого, по собственному признанию больше всего опасается канадский астронавт Крис Хэдфилд — даже больше, чем погибнуть во время старта или сгореть вместе с кораблем при входе в плотные слои атмосферы.

Единственный инцидент с тросом произошел в 2006 году у американского астронавта Пирса Селлерса. Трос открепился от его скафандра, однако, астронавт вовремя заметил проблему и с помощью коллег быстро вернул его на место.

Космический адаптационный синдром

Поездка в космос отличается от тура даже на самые дальние острова, ведь здесь сила притяжения Земли минимальна

Без земного притяжения, которое притягивает тело человека к поверхности планеты, у людей часто возникает тошнота, известная как космический адаптационный синдром. Может показаться, что вас просто укачало, но кроме тошноты этот синдром сопровождается головными болями, потерей в пространстве, ощущением сильного дискомфорта, рвотой и головокружением. Примерно половина людей, которые побывали в космосе, ощутили на себе все прелести этого синдрома, вряд ли вы окажетесь в меньшинстве. Тошноту вызывает изменение силы притяжения, поэтому человеческому организму нужно время, чтобы к нему привыкнуть. Хотя вряд ли можно привыкнуть к тому, что ты летишь с огромной скоростью сквозь пространство Вселенной. К счастью, такое путешествие не продлится долго, так что возьмите себя в руки и постарайтесь сделать так, чтобы вас не стошнило, ведь космос не самое подходящие для этого место.

А когда вы наденете скафандр, нужно будет приклеить трансдермальный пластырь, который подавляет тошноту. Если вас вырвет в скафандре, есть вероятность летального исхода. Это тоже самое, что надеть на голову аквариум с вакуумной трубкой, через которую поступает воздух, и вас стошнит прямо в неё. Очевидно, что возникнут проблемы с дыханием и углом обзора. Ситуация может усугубиться, если в этот момент вы будете в открытом космосе.

Жизнь на Марсе

Так что же происходит с нашим мозгом в космосе?

Один из экспериментов NASA по нейрокогнитивной эффективности сравнивал мозг космонавтов до и после пребывания на МКС в течение шести месяцев, используя сканирование FMRI. Ученые обнаружили снижение связанности моторных и вестибулярных областей мозга. Они необходимы для координации движения у космонавтов, осуществивших длительные космические полеты.

В условиях невесомости мозг продолжает посылать такие сигналы телу, как если бы оно находилось в нормальных условиях гравитации. И тогда тело начинает думать, что оно падает. Или находится в перевернутом положении. Через некоторое время мозг более или менее приспосабливается к новой среде. Но при возвращении на Землю изменение рефлексов может вызвать длительные проблемы.

В будущем

Космические путешествия захватывали воображение человечества на протяжении веков. И перед появившимися возможности и ресурсами для отправки людей в космос будет трудно устоять.

Эти попытки будут только ускорять исследования вопросов влияния космоса на неврологию и физиологию человека. И позволят находить способы, которыми наши мозги и тела будут приспосабливаться к отдаленным и отличным от Земли средам. Тем, где происходила вся наша эволюционная история.

Они, возможно, так же приведут к рассмотрению более дорогостоящих технических решений. Таких, как использование искусственной гравитации для путешествий по маршруту Земля-Марс и Марс-Земля. Или более быстрый перелет (хотя и дорогостоящий с точки зрения энергетики, но позволяющий достичь Марса меньше чем за три месяца). Или, может быть, строительство удобных больших подземных жилых объектов на Марсе.

Чем пахнет в космосе?

Оказывается, в космосе пахнет не лучшим образом

Подумывая о путешествии в космос, вряд ли вы задумываетесь о том, какие запахи будут сопровождать вас в этой поездке. Если всё же такая идея пришла в голову, то, вероятно, ваше обонятельное воображение очень хорошо развито. Так чем же пахнет вакуум? Говорят, что это нечто среднее между подгоревшим стейком, окисленным металлом и порохом. Вы когда-либо слышали что-то более брутальное?

Космонавт Дон Петит считает, что наиболее точно этот запах описывает слово «металлический».

В NASA даже наняли специального сотрудника, задача которого воссоздать космический запах для тренировок. Самым большим упущением во всей этой истории кажется только одно — почему компании, продающие путёвки в космос, не продают неземной аромат? Его вполне можно было бы использовать как ароматизатор для дома.

Переутомление

Космический скафандр весит около 160 килограмм. Конечно, в безвоздушном пространстве космоса он не весит ничего, но, тем не менее, он очень громоздкий и работать в нем крайне затруднительно. Вот что рассказывает об этом канадский астронавт Крис Хэдфилд:

«Если вы ткнете пальцем в человека, одетого в скафандр НАСА, у вас возникнет ощущение, что вы давите на волейбольный мяч: у материала точно такая же жесткость. При каждом движении вы вынуждены преодолевать упругое сопротивление. Поэтому вы возвращаетесь с космической прогулки совершенно физически измотанными, иногда с кровавыми мозолями, и все из-за скафандра, работать в котором — одно сплошное мучение».

Кроме того, в невесомости многие действия, кажущиеся элементарными на Земле, требуют значительных физических усилий. Например, нельзя просто зависнуть в нужном месте и открутить гайку с помощью ключа. Вы крутите гайку в одном направлении, а в это время ваше тело начинает вращаться в противоположном. Приходится прилагать в несколько раз больше усилий и делать все очень аккуратно и очень медленно. Приходится прилагать усилия даже просто для того, чтобы оставаться на одном месте. Еще любой работе предшествует длительный этап подготовки к ней: достичь нужной точки, закрепиться там, подготовить необходимые инструменты.

Когда человек устает, вероятность того, что он допустит ошибку, значительно возрастает. В условиях открытого космоса даже маленькая оплошность может быть чревата огромными проблемами.

Зачем космонавтам спать в полете

Экономия ресурсов и пространства

В гибернации космонавтам не потребуется питание в привычном виде — необходимые организму вещества будут поставляться через систему жизнеобеспечения. За счет сокращения запасов пищи и воды на борту вес шаттла уменьшится, и для полета понадобится меньше топлива.

Космические корабли станут компактнее, так как астронавты будут лежать в капсулах сна, не передвигаясь по салону. Агентство NASA рассчитало, что для экипажа из 4–6 человек объем жилого модуля сократится в шесть раз, а суммарная масса снаряжения, продуктов питания и личных вещей — на 52–68%.

Защита от радиации

В космосе человек за сутки получает в 200 раз больше радиации, чем на Земле. Этот уровень зафиксировали на поверхности Луны. Из-за отсутствия атмосферы земной спутник не защищен от радиации, поэтому показатели соответствуют излучению в открытом космосе. Это равносильно тому, как если бы астронавт ежедневно по 5–6 раз проходил рентгенографию грудной клетки. Повышенное радиоактивное излучение сокращает продолжительность жизни и может вызывать онкологические заболевания.

В состоянии гибернации организм лучше защищен от радиации, чем при бодрствовании. Это выяснили ученые из Болонского университета: они искусственно ввели крыс в спячку и подвергли их рентгеновскому излучению. Анализ тканей органов показал, что для животных в гибернации радиация была менее опасной по сравнению с крысами, которых облучали в состоянии активности.

Помимо физиологического аспекта есть и технический. По словам Джейсона Дерлета, инженера и руководителя Института передовых концепций NASA, когда все космонавты находятся в одной части корабля и не передвигаются, ее проще и дешевле защитить от радиации, чем весь шаттл.

Сохранение психического здоровья экипажа

Полет в космос — тяжелое испытание для человеческой психики. Во-первых, члены экипажа долгое время находятся друг с другом в ограниченном пространстве, вдали от семьи и друзей. Главные психологические факторы, по которым отбирают космонавтов, — высокая терпимость к окружающим, неконфликтность и умение работать в коллективе. Но в течение полета взаимоотношения между членами экипажа все равно могут ухудшаться, что влияет на успех программы.

Во-вторых, у астронавтов нарушаются циркадные ритмы, которые регулируют периоды отдыха и активности. Но когда космонавты кружат по орбите, «закаты» или «восходы» Солнца происходят каждые 45 минут, поэтому суточный цикл не делится на день и ночь, как на Земле. Из-за этого организм не понимает, когда нужно спать, а когда бодрствовать, может возникать чувство постоянной усталости и раздражительность. Если космонавты будут находиться в состоянии гибернации, негативных последствий для их психики, связанных с длительной изоляцией и нарушением сна, удастся избежать.

Евгений Фесенко, кандидат биологических наук, заместитель директора по научной работе, заведующий лабораторией криобиологии Института биофизики клетки ФИЦ ПНЦБИ РАН:

«Помимо экономии кислорода, воды, продуктов питания к потенциальным преимуществам гибернации можно отнести защиту от космической радиации, а также сохранение психического здоровья во время полета».

Как ученые пытаются вызвать искусственную гибернацию

Проект «Технологии искусственного гипобиоза»

«Технологии искусственного гипобиоза» — совместный проект Фонда перспективных исследований и Института биофизики клетки РАН. Целью исследований было создать препарат, который погружал бы человека в искусственную спячку.

Проект завершился в 2018 году: ученые разработали сложную фармацевтическую композицию, включающую также инертный газ ксенон. Препарат тестировали на кроликах и крысах, у которых после укола на 7℃ понижалась температура и на 70% замедлялся метаболизм. Через 10–15 часов животные возвращались к нормальному состоянию.

По словам заведующего лабораторией механизмов природных гипометаболических состояний ИБК РАН, кандидата биологических наук Надежды Захаровой, с помощью инъекций удавалось поддерживать крыс в гибернации на протяжении семи суток. После того как препарат пройдет доклинические испытания на токсичность, начнется разработка технологии для людей. Но одним из препятствий для широкого применения может стать высокая цена ксенона: объем газа, необходимый для поддержания анестезии человека в течение двух часов, стоит порядка $300.

Эксперимент с сероводородом

В 2005 году ученые из Онкологического исследовательского центра в Сиэтле обнаружили, что сероводород вызывает состояние гибернации у мышей, в естественных условиях не впадающих в спячку. Когда животные поглощали газ, их метаболизм постепенно замедлялся на 90%. Также после этого они могли провести около семи часов, дыша воздухом с содержанием кислорода 3–5%, — обычно в таких условиях мыши умирают через 20 минут. Нормальная концентрация кислорода в атмосфере — 20%.

Эксперимент попытались повторить на овцах, но выяснилось, что крупных животных погрузить в спячку с помощью сероводорода невозможно. Маленькие дозы на них не действуют, а большие слишком токсичны и приводят к смерти.

Активация определенных нейронов

В 2020 году две группы ученых — из Гарвардской медицинской школы и Цукубского университета — независимо друг от друга обнаружили у мышей нейроны, регулирующие состояние гибернации. Исследователи воздействовали на определенную часть мозга животных с помощью химических веществ. После стимуляции нейронов температура тела у мышей снижалась, метаболизм замедлялся.

Как объяснили результат ученые, даже у млекопитающих, не впадающих в сезонную спячку, есть защитный механизм гибернации. Он активируется при недостатке калорий — главном признаке неблагоприятных условий. Было показано, что стимуляция определенных нейронов погружает мышей в гибернацию даже при достаточном количестве пищи. На людях похожие эксперименты пока не проводили, но ученые считают, что это открытие станет основой для будущих исследований.

Снижение температуры

В спячке температура тела животных снижается, поэтому возможно, что так же получится вызвать гибернацию у человека. Краткосрочную искусственную гипотермию (снижение температуры) уже сейчас применяют в медицине, например во время реанимации при остановке сердца.

Через катетер в вену вводят охлаждающий раствор, который циркулирует в организме и замедляет метаболизм. Это позволяет отложить наступление необратимых повреждений мозга, вызванных нехваткой кислорода. У врачей появляется больше времени на реанимацию. Главная проблема при гипотермии — купировать нарушение функций различных органов, вызванное избыточным переохлаждением.

Технические аспекты

Ученые из университета в Мюнхене, Европейское космическое агентство (ESA) и аэрокосмическая инженерная компания SpaceWorks независимо друг от друга представили проекты того, как будет выглядеть полет в космос, если погрузить космонавтов в гибернацию. В концептах описывается устройство капсулы для сна, системы жизнеобеспечения и другие технические аспекты.

Капсула для сна. Ученые из Мюнхенского университета Людвига-Максимилиана разработать специальные контейнеры, в которых космонавты будут находиться во время гибернации. В капсулах с мягкой оболочкой будут поддерживаться оптимальные условия для спячки: приглушенное освещение, температура ниже 10℃, высокая влажность. Для контроля за состоянием здоровья каждого космонавта понадобятся датчики. Аналогичный проект с одиночными капсулами разработало Европейское космическое агентство.

Концепт капсул для гибернации от Европейского космического агентства

(Фото: ESA)

SpaceWorks предлагает другой подход: вместо одиночных капсул поместить членов экипажа в общую цилиндрическую камеру. Она должна будет вращаться, создавая искусственную гравитацию для поддержания тонуса опорно-двигательного аппарата и сосудов.

Система жизнеобеспечения. SpaceWorks предлагает разработать систему капельниц, которая будет поставлять астронавтам питательные вещества внутривенно. Европейское космическое агентство, наоборот, считает, что в гибернации люди смогут выживать, как животные, впадающие в естественную спячку, — получать углеводы и белки из накопленной жировой ткани.

Периодические пробуждения. Согласно всем трем концептам, каждый космонавт будет проводить в гибернации не больше определенного промежутка времени за один раз. Пробуждения понадобятся главным образом для того, чтобы проверить здоровье и по необходимости подлечиться. Во время бодрствования члены экипажа также смогут разнообразить питание, при наличии связи пообщаться с близкими.

Дежурные. Возможно, космонавты будут просыпаться по очереди, чтобы всегда бодрствовали 1–2 человека. Они наблюдали бы за состоянием остальных, проверяли точность маршрута и состояние корабля, вели отчеты и связывались с Землей. Но допускается, что эту роль сможет выполнять искусственный интеллект.

Евгений Фесенко:

«На мой взгляд, при отправке небольших экипажей до десяти человек в экспедиции в пределах Солнечной системы гибернация окажется невостребованной. Когда понадобится увеличить численность перевозимых людей до 100, 1 000 или более человек, гибернация может стать хорошим выходом, если инженеры к этому времени достигнут пределов увеличения полезной нагрузки космического корабля (полезная нагрузка — масса оборудования, ради которого запускается шаттл). Технология криозамораживания целого организма с его последующим восстановлением вывела бы перспективы космических путешествий на принципиально иной уровень, однако до ее разработки еще далеко».

Предположения

Теперь мы переходим к самой спекулятивной части нашей лекции, потому что здесь есть только теория и всего один эксперимент. Если у нас получились здоровые половые клетки, успешно прошел половой акт, произошла имплантация и начал развиваться эмбрион, то даже если он сможет выжить в условиях невесомости, этот ребенок будет не готов к жизни на планетах. Его организм не сможет противостоять силе тяжести. То есть, если он выживет, он сможет лежать в какой-нибудь ванне или специальной кровати, но его организм почти не сможет справляться с нагрузкой. Он рос, когда нагрузок не было, соответственно, мышцы и скелет были ему не нужны, поэтому они у него тонкие и слабые. Вторая проблема — радиация. Как мы уже обсуждали, делящиеся клетки очень к ней уязвимы. Второй момент связан с тем, что, очевидно, в растущем организме клеток делится очень много, то есть у каждой клетки во взрослом организме будет множество потомков. Соответственно, если в детском возрасте какая-то клетка мутировала (особенно если неблагоприятно, что случается чаще), то все потомки этой клетки будут с мутацией: будут также носить какую-то вредную генетическую информацию. Таким образом, организму будет сложно вырасти здоровым и полноценным даже для того, чтобы жить в невесомости, не говоря о том, чтобы вернуться на Землю. Но был проведен эксперимент: та же самая рыбка — японская оризия — летала в космос на две недели еще раз.

Тут важно, что в космос отправляли половозрелых с полностью сформированными гонадами и гаметами рыб. На космической станции провели оплодотворение, а затем уже мальков, которые развились в космосе из икринок, отправили на Землю

Ученых интересовало, будут ли эти рыбы фертильны. Для этого ученые измерили количество яйцеклеток в гонадах рыб, которые летали в космос, и у двух групп, которые оставались на Земле. Разброс показателей оказался примерно одинаковый. То есть для рыб возможно развитие из икринки в космических условиях с дальнейшим вполне себе функционированием на Земле. Ну и, кстати, потомки тех самых рыб, которые летали в космос, до сих пор живут в лаборатории.

У рыб, конечно, есть два огромных преимущества. Во-первых, они живут в воде, которая сама по себе является симулятором невесомости: она снимает часть нагрузок. То есть уже на Земле рыбы были частично готовы к невесомости. Плюс ко всему вода и пластик для пробирок являются очень хорошими экранами для радиации. Во-вторых, у рыб нет имплантации и раннего эмбрионального развития. Икра развивается отдельно от организма матери, поэтому им во много раз проще.

Этот эксперимент на рыбах — единственный, но, разумеется, для млекопитающих он не показатель. Однако многие ученые набираются смелости приводить различные теории. Одна из самых обнадеживающих заключается в том, что материнский организм, который всегда перестраивается во время беременности, способен компенсировать очень много факторов, чтобы внутриутробное развитие эмбрионов происходило нормально. Многие ученые считают, что если женщина окажется беременной в космосе, для чего нужно преодолеть все преграды, то дальнейшие компенсаторные механизмы позволят ей выносить здорового для космических условий ребенка. Но это, разумеется, вилами по воде писано.

Разгерметизация

Ее испытал на себе пилот ВВС США Джозеф Киттингер, совершивший в 1960 году затяжной парашютный прыжок из стратосферы. Во время прыжка произошла разгерметизация его правой перчатки, из-за чего рука сильно увеличилась в размере. На счастье парашютиста остальные части костюма выполнили свою функцию и он благополучно завершил прыжок.

Разгерметизация может возникнуть из-за случайных повреждений или проколов скафандра. Тело человека начинает стремительно расширяться, и, если космонавт не успеет в самое ближайшее время добраться до космического корабля, он погибнет. Скафандр состоит из семи прочных слоев, что является страховкой на случай повреждения, и защитой от мелких метеоритов, весом менее грамма, имеющих, однако огромную скорость и энергию.

Случаи повреждения скафандра несколько раз имели место, но, к счастью, не приводили к разгерметизации. Обычно космонавты повреждают перчатки, выполняя перемещение оборудования или технические работы.

«Космический загар»

www.fotocamers.info

Солнце может излучать энергию в очень широком волновом диапазоне. Идёт от него и ультрафиолетовое излучение, которое мы не можем ни увидеть, ни почувствовать. Вообще, ультрафиолетовое излучение — это не так уж плохо, поскольку оно помогает организму вырабатывать витамин D, но если загорать слишком долго, то излучение может вызвать ожоги и разные заболевания, такие, как катаракта, нарушения в работе иммунной системы, рак кожи и её преждевременное старение.

Если открытый участок кожи астронавта подвергнется влиянию солнечных лучей в космосе (а там, в отличие от Земли, нет защитного озонового слоя), то астронавт получит сильнейший ожог. Однако этого не случится, пока на астронавте скафандр.

Подытожим: Что будет чувствовать человек, оказавшийся в космическом вакууме

Опишем на опыте, схожем с тем, что произошел с космонавтом Боумэном в фильме Стэнли Кубрика «Космическая Одиссея 2001». Допустим, модуль, в котором вы сейчас находитесь, отрезан от остального корабля взрывом. Вы видите через иллюминатор дверь ближайшего модуля, за дверями которого вас ждет спасение. Находится он на расстоянии 10 метров от вашего, но для того, чтобы их преодолеть, вам придется плыть в космическом вакууме без скафандра, поскольку в этом отсеке его в наличии попросту нет.

Предположим, что, как и большинство необученных людей, вы сможете в момент глубочайшего стресса, то есть на пике выброса адреналина и учащенного сердцебиения, оставаться в сознании без кислорода на протяжении 8-12 секунд. И этот промежуток будет тем короче, чем активнее вы будете себя вести.

Вначале вам придется приготовиться и сделать несколько частых вдохов. Затем полностью выдохнуть и держать рот приоткрытым, чтобы не повредить легкие (отсчет пошел). Затем открыть шлюз (1 секунда прошла). При этом нужно держаться за что-то, не то бесконтрольным выбросом воздуха вас запустит в непредсказуемом направлении. Во рту у вас тут же пересыхает, уши сильнейшим образом закладывает, отчаянно хочется моргнуть. Но лучше с этим потерпеть. Когда все успокоится и давление сравняется с наружным (2-я секунда прошла) нужно расчетливо оттолкнуться и запустить свое тело в сторону спасительного модуля (3-я и 4-я секунда прошли).

Чем больше будет скорость, тем лучше. Заметим, что скорость обычного пешехода это 5 км/ч, то есть – около 1 м 40 см в секунду. Если лететь с такой скоростью, на преодоление 10 метров уйдет больше 6 секунд и вы рискуете прибыть к месту назначения потеряв сознание, и спастись вам уже не удастся, поскольку вы даже люк шлюза модуля не сможете открыть.

Валли в одноименном мультике пользовался вместо реактивного двигателя огнетушителем. Но тут без сноровки можно запустить себя в ином направлении.

Допустим, вам удалось придать своему телу скорость 10 км/ч и, пролетев участок пути, ровно приземлится на дверь шлюза (5-я, 6-я и 7-я секунды). В глазах у вас уже темнеет, сердце бьется учащенно, но ни на что другое вы не обращаете внимания, кроме как бьете по клавише двери шлюза или дергаете какой-то рычаг (в зависимости от конструкции). Затем последним усилием вбрасываете себя в отъехавшие двери шлюза, бьете по клавише закрытия дверей и восстановления атмосферы (еще 2 секунды, плюс секунда на нагнетание дыхательной смеси в шлюз, на все про все понадобилось 10 секунд). В этом случае, даже если вы потеряете сознание, вы очнетесь уже в полном добром здравии, спасенным.

Никаких обморожений вы на себе не найдете, равно как и не вспомните было ли вам холодно или нет за время своего полета. Скорее всего, вам покажется, что вам было «сухо». То есть, и ни холодно, и ни жарко. Никаких других «дискомфортных» чувств вы не обнаружите.

Если же вы оказались «за бортом» в результате взрыва и вас удалось выловить из вакуума в течении 2 минут и быстренько реанимировать, ваш организм вполне сможет восстановиться без каких-либо последствий.

Если хапанули радиации – это покажет счетчик гейгера и медицинская экспертиза. Если получили солнечный ожог – это покажет загар на лице. Остальное тело от ультрафиолета худо-бедно спасет одежда. Вот, в принципе, и все.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Журнал Ремо Стайл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: