Выбор сечения провода (кабеля) по мощности – таблица
Пример.
Возьмем однокомнатную квартиру. Какими электроприборами мы пользуемся? Ниже вы увидите таблицу, в которой указаны электроприборы и инструменты, используемые в быту:
Таблица 1.
Бытовой электроприбор | Мощность, Вт | Бытовой электроприбор | Мощность, Вт |
Лампочка | 15 – 250 | Духовка | 1000 – 3000 |
Принтер струйный | 30 – 50 | СВЧ печь | 1500 – 3000 |
Весы | 40 – 300 | Пылесос | 400 – 2000 |
Аудиосистема | 50 – 250 | Мясорубка | 1500 – 2200 |
Компьютер | 300 – 800 | Тостер | 500 – 1500 |
Принтер лазерный | 200 – 500 | Гриль | 1200 – 2000 |
Копировальный аппарат | 300 – 1000 | Кофемолка | 500 – 1500 |
Телевизор | 100 – 400 | Кофеварка | 500 – 1500 |
Холодильник | 150 – 2000 | Посудомоечная машина | 1000 – 2000 |
Стиральная машина | 1000 – 3000 | Утюг | 1000 – 2000 |
Электрочайник | 1000 –2000 | Обогреватель | 500 – 3000 |
Электроплита | 1000 – 6000 | Кондиционер | 1000 – 3000 |
Подсчитаем общую потребляемую мощность электроприборов, используемых в однокомнатной квартире. Возьмем по минимуму:
- Лампы энергосберегающие – 14 штук по 15 Вт;
- Телевизор – 200 Вт;
- Аудиосистема – 150 Вт;
- Компьютер – 500 Вт;
- Принтер лазерный – 300 Вт;
- Холодильник – 500 Вт;
- Стиральная машина – 2000 Вт;
- Электрочайник – 2000 Вт;
- Кофеварка – 1000 Вт;
- СВЧ печь – 2000 Вт;
- Пылесос – 1200 Вт;
- Утюг – 1000 Вт;
- Кондиционер – 2000 Вт.
Произведем подсчет:
14 × 15 = 210 Вт (лампы энергосберегающие);
210 + 200 + 150 + 500 + 300 + 500 + 2000 + 1000 + 2000 + 1200 + 1000 + 2000 = 11 060 Вт = 11,06 кВт
Мы подсчитали общую нагрузку, которую может потреблять квартира, но этого не будет никогда. Почему? Представьте себе, что вы включили одновременно все электроприборы. Может такое быть с вами? Конечно нет. Зачем вам включать, например, одновременно телевизор, аудиосистему, пылесос и кондиционер зимой или другое сочетание бытовых приборов. Конечно вы делать этого не будите.
К чему я это все пишу, а к тому, что существует так называемый коэффициент одновременности, который равен̴̴̴ ~ 0.75.
11,06 × 0,75 = 8,295 ~ 8,3 кВт. Такую максимальную нагрузку вы сможете подключить, имея электроприборы, перечисленные выше, короткое время. Это для информации.
Но для расчета сечения провода (кабеля), все-таки нужно брать общую нагрузку без коэффициента. Для данного примера 11, 06 ~ 11 кВт.
Данный подсчет мы сделали для вводного провода (кабеля), который будет питать всю квартиру напряжением 220 В.
Таблица выбора сечения жил провода (кабеля) по мощности и току
Таблица 2.
Как пользоваться таблицей? Смотрим в таблицу и выбираем «Медные жилы проводов и кабелей» > «Напряжение 220 В» > «Мощность, кВт», так как у нас общая мощность 11 кВт, выбираем всегда с запасом и получаем 15,4 что соответствует сечение 10 мм². Смотрите ниже:
Советую всегда брать сечение жилы кабеля с запасом, потому что жилы кабеля не будут нагреваться при большой нагрузки и в будущем возможно вы увеличите свой арсенал бытовых электроприборов и инструментов не только в количестве, но и по мощности.
Глядя на эту таблицу также можно определить сечение медного проводника для напряжения 380 В, а также алюминиевого на 220 и 380 В.
380 В (3 фазы и нуль) применяется для подключения коттеджей и там, где без трехфазной системы нельзя обойтись, например, подключение 3-х фазных электродвигателей, калориферов, холодильных установок и другое.
Давайте посмотрим какое сечение проводника нужно для каждого в отдельности электроприбора на 220 В зная его мощность по паспорту:
Таблица 3.
Сечение медной жилы, мм² | Мощность электроприбора, Вт |
0,35 | 100 – 500 |
0,5 | 700 |
0,75 | 900 |
1,0 | 1200 |
1,2 | 1500 |
1,5 | 1800 – 2000 |
2,0 | 2500 |
2,5 | 3000 – 3500 |
3,0 | 4000 |
3,5 | 4500 – 5000 |
5,0 | 6000 |
Ниже представлена таблица применения медных проводов (кабелей) по сечению:
Таблица 4.
Сечение медных жил, мм² | Предельно-допустимая нагрузка, А (ампер) | Номинальная сила тока автоматического выключателя, А | Максимальная нагрузка
U = 220 В, кВт |
Пример применения |
1,5 | 19 | 10 | 4,1 | Освещение |
2,5 | 27 | 16 | 5,9 | Розетки |
4 | 38 | 25 | 8,3 | Кондиционеры, водонагреватели |
6 | 46 | 32 | 10,1 | Электрические плиты, шкафы |
10 | 70 | 50 | 15,4 | Ввод в квартиру |
Пример расчета сечения кабеля
Задача: запитать ТЭН мощностью W=4,75 кВт медным проводом в кабель-канале.
Расчет тока: I = W/U. Напряжение нам известно: 220 вольт. Согласно формуле протекающий ток I = 4750/220 = 21,6 ампера.
Ориентируемся на медный провод, потому берем значение диаметра медной жилы из таблицы. В колонке 220В — медные жилы находим значение тока, превышающего 21,6 ампера, это строка со значением 27 ампера. Из этой же строки берем Сечение токопроводящей жилы, равное 2,5 квадрата.
Расчет необходимого сечения кабеля по марке кабеля, провода
№ | Число жил, сечение мм. Кабеля (провода) | Наружный диаметр мм. | Диаметр трубы мм. | Допустимый длительный ток (А) для проводов и кабелей при прокладке: | Допустимый длительный ток для медных шин прямоугольного сечения (А) ПУЭ | |||||||||||
ВВГ | ВВГнг | КВВГ | КВВГЭ | NYM | ПВ1 | ПВ3 | ПВХ (ПНД) | Мет.тр. Ду | в воздухе | в земле | Сечение, шины мм | Кол-во шин на фазу | ||||
1 | 1х0,75 | 2,7 | 16 | 20 | 15 | 15 | 1 | 2 | 3 | |||||||
2 | 1х1 | 2,8 | 16 | 20 | 17 | 17 | 15х3 | 210 | ||||||||
3 | 1х1,5 | 5,4 | 5,4 | 3 | 3,2 | 16 | 20 | 23 | 33 | 20х3 | 275 | |||||
4 | 1х2,5 | 5,4 | 5,7 | 3,5 | 3,6 | 16 | 20 | 30 | 44 | 25х3 | 340 | |||||
5 | 1х4 | 6 | 6 | 4 | 4 | 16 | 20 | 41 | 55 | 30х4 | 475 | |||||
6 | 1х6 | 6,5 | 6,5 | 5 | 5,5 | 16 | 20 | 50 | 70 | 40х4 | 625 | |||||
7 | 1х10 | 7,8 | 7,8 | 5,5 | 6,2 | 20 | 20 | 80 | 105 | 40х5 | 700 | |||||
8 | 1х16 | 9,9 | 9,9 | 7 | 8,2 | 20 | 20 | 100 | 135 | 50х5 | 860 | |||||
9 | 1х25 | 11,5 | 11,5 | 9 | 10,5 | 32 | 32 | 140 | 175 | 50х6 | 955 | |||||
10 | 1х35 | 12,6 | 12,6 | 10 | 11 | 32 | 32 | 170 | 210 | 60х6 | 1125 | 1740 | 2240 | |||
11 | 1х50 | 14,4 | 14,4 | 12,5 | 13,2 | 32 | 32 | 215 | 265 | 80х6 | 1480 | 2110 | 2720 | |||
12 | 1х70 | 16,4 | 16,4 | 14 | 14,8 | 40 | 40 | 270 | 320 | 100х6 | 1810 | 2470 | 3170 | |||
13 | 1х95 | 18,8 | 18,7 | 16 | 17 | 40 | 40 | 325 | 385 | 60х8 | 1320 | 2160 | 2790 | |||
14 | 1х120 | 20,4 | 20,4 | 50 | 50 | 385 | 445 | 80х8 | 1690 | 2620 | 3370 | |||||
15 | 1х150 | 21,1 | 21,1 | 50 | 50 | 440 | 505 | 100х8 | 2080 | 3060 | 3930 | |||||
16 | 1х185 | 24,7 | 24,7 | 50 | 50 | 510 | 570 | 120х8 | 2400 | 3400 | 4340 | |||||
17 | 1х240 | 27,4 | 27,4 | 63 | 65 | 605 | 60х10 | 1475 | 2560 | 3300 | ||||||
18 | 3х1,5 | 9,6 | 9,2 | 9 | 20 | 20 | 19 | 27 | 80х10 | 1900 | 3100 | 3990 | ||||
19 | 3х2,5 | 10,5 | 10,2 | 10,2 | 20 | 20 | 25 | 38 | 100х10 | 2310 | 3610 | 4650 | ||||
20 | 3х4 | 11,2 | 11,2 | 11,9 | 25 | 25 | 35 | 49 | 120х10 | 2650 | 4100 | 5200 | ||||
21 | 3х6 | 11,8 | 11,8 | 13 | 25 | 25 | 42 | 60 | Допустимый длительный ток для медных шин прямоугольного сечения (А) Schneider Electric IP30 | |||||||
22 | 3х10 | 14,6 | 14,6 | 25 | 25 | 55 | 90 | |||||||||
23 | 3х16 | 16,5 | 16,5 | 32 | 32 | 75 | 115 | |||||||||
24 | 3х25 | 20,5 | 20,5 | 32 | 32 | 95 | 150 | |||||||||
25 | 3х35 | 22,4 | 22,4 | 40 | 40 | 120 | 180 | Сечение, шины мм | Кол-во шин на фазу | |||||||
26 | 4х1 | 8 | 9,5 | 16 | 20 | 14 | 14 | 1 | 2 | 3 | ||||||
27 | 4х1,5 | 9,8 | 9,8 | 9,2 | 10,1 | 20 | 20 | 19 | 27 | 50х5 | 650 | 1150 | ||||
28 | 4х2,5 | 11,5 | 11,5 | 11,1 | 11,1 | 20 | 20 | 25 | 38 | 63х5 | 750 | 1350 | 1750 | |||
29 | 4х50 | 30 | 31,3 | 63 | 65 | 145 | 225 | 80х5 | 1000 | 1650 | 2150 | |||||
30 | 4х70 | 31,6 | 36,4 | 80 | 80 | 180 | 275 | 100х5 | 1200 | 1900 | 2550 | |||||
31 | 4х95 | 35,2 | 41,5 | 80 | 80 | 220 | 330 | 125х5 | 1350 | 2150 | 3200 | |||||
32 | 4х120 | 38,8 | 45,6 | 100 | 100 | 260 | 385 | Допустимый длительный ток для медных шин прямоугольного сечения (А) Schneider Electric IP31 | ||||||||
33 | 4х150 | 42,2 | 51,1 | 100 | 100 | 305 | 435 | |||||||||
34 | 4х185 | 46,4 | 54,7 | 100 | 100 | 350 | 500 | |||||||||
35 | 5х1 | 9,5 | 10,3 | 16 | 20 | 14 | 14 | |||||||||
36 | 5х1,5 | 10 | 10 | 10 | 10,9 | 10,3 | 20 | 20 | 19 | 27 | Сечение, шины мм | Кол-во шин на фазу | ||||
37 | 5х2,5 | 11 | 11 | 11,1 | 11,5 | 12 | 20 | 20 | 25 | 38 | 1 | 2 | 3 | |||
38 | 5х4 | 12,8 | 12,8 | 14,9 | 25 | 25 | 35 | 49 | 50х5 | 600 | 1000 | |||||
39 | 5х6 | 14,2 | 14,2 | 16,3 | 32 | 32 | 42 | 60 | 63х5 | 700 | 1150 | 1600 | ||||
40 | 5х10 | 17,5 | 17,5 | 19,6 | 40 | 40 | 55 | 90 | 80х5 | 900 | 1450 | 1900 | ||||
41 | 5х16 | 22 | 22 | 24,4 | 50 | 50 | 75 | 115 | 100х5 | 1050 | 1600 | 2200 | ||||
42 | 5х25 | 26,8 | 26,8 | 29,4 | 63 | 65 | 95 | 150 | 125х5 | 1200 | 1950 | 2800 | ||||
43 | 5х35 | 28,5 | 29,8 | 63 | 65 | 120 | 180 | |||||||||
44 | 5х50 | 32,6 | 35 | 80 | 80 | 145 | 225 | |||||||||
45 | 5х95 | 42,8 | 100 | 100 | 220 | 330 | ||||||||||
46 | 5х120 | 47,7 | 100 | 100 | 260 | 385 | ||||||||||
47 | 5х150 | 55,8 | 100 | 100 | 305 | 435 | ||||||||||
48 | 5х185 | 61,9 | 100 | 100 | 350 | 500 | ||||||||||
49 | 7х1 | 10 | 11 | 16 | 20 | 14 | 14 | |||||||||
50 | 7х1,5 | 11,3 | 11,8 | 20 | 20 | 19 | 27 | |||||||||
51 | 7х2,5 | 11,9 | 12,4 | 20 | 20 | 25 | 38 | |||||||||
52 | 10х1 | 12,9 | 13,6 | 25 | 25 | 14 | 14 | |||||||||
53 | 10х1,5 | 14,1 | 14,5 | 32 | 32 | 19 | 27 | |||||||||
54 | 10х2,5 | 15,6 | 17,1 | 32 | 32 | 25 | 38 | |||||||||
55 | 14х1 | 14,1 | 14,6 | 32 | 32 | 14 | 14 | |||||||||
56 | 14х1,5 | 15,2 | 15,7 | 32 | 32 | 19 | 27 | |||||||||
57 | 14х2,5 | 16,9 | 18,7 | 40 | 40 | 25 | 38 | |||||||||
58 | 19х1 | 15,2 | 16,9 | 40 | 40 | 14 | 14 | |||||||||
59 | 19х1,5 | 16,9 | 18,5 | 40 | 40 | 19 | 27 | |||||||||
60 | 19х2,5 | 19,2 | 20,5 | 50 | 50 | 25 | 38 | |||||||||
61 | 27х1 | 18 | 19,9 | 50 | 50 | 14 | 14 | |||||||||
62 | 27х1,5 | 19,3 | 21,5 | 50 | 50 | 19 | 27 | |||||||||
63 | 27х2,5 | 21,7 | 24,3 | 50 | 50 | 25 | 38 | |||||||||
64 | 37х1 | 19,7 | 21,9 | 50 | 50 | 14 | 14 | |||||||||
65 | 37х1,5 | 21,5 | 24,1 | 50 | 50 | 19 | 27 | |||||||||
66 | 37х2,5 | 24,7 | 28,5 | 63 | 65 | 25 | 38 |
Шкала номинальных токов автоматических выключателей
На корпусе автоматических выключателей производителем всегда указываются главные характеристики устройства, его модель, серийный номер и бренд.
Главной и самой важной характеристикой автомата является значение номинального тока. Она показывает максимально допустимый ток, который может долго проходить через автоматический выключатель без его нагрева и отключения. Значение тока измеряется и указывается в Амперах (А)
Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь
Значение тока измеряется и указывается в Амперах (А). Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь.
Модели автоматов имеют стандарт значений номинального тока и бывают 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А. Бывают и более мощные приборы, но в быту они не используются и предназначены только для специальных задач в промышленности.
Согласно нормативно-технической документации номинальный ток для любого автоматического выключателя указывается для работы прибора при температуре окружающей среды +30 градусов Цельсия.
Устанавливают автоматы в электрощитах на дин-рейку по несколько штук в зависимости от количества защищаемых линий. При одновременном расположении нескольких устройств вплотную друг к другу они «подогревают» друг друга, это приводит к уменьшению значения тока, который они могут пропустить без отключения. В связи с этим в каталогах и инструкциях к приборам защиты производители часто указывают поправочные коэффициенты для размещения групп выключателей.
5.5. Рекомендуемые марки проводов и кабелей
В ПУЭ (7-е изд., раздел 7, п. 7.1.34) для внутренних электропроводок зданий предписывается использование проводов и кабелей с медными жилами. Поэтому ниже рекомендуются марки проводов и кабелей для применения в жилых зданиях только с медными жилами.
В табл. 5.15 приведены основные данные наиболее употребительных силовых кабелей напряжением до 1 кВ, которые используются для внутренних электропроводок. Так как приведенные марки кабелей могут быть использованы в помещениях любой категории по электробезопасности (сухие, влажные, сырые, особо сырые), то в таблице указаны также возможные способы их прокладки.
В табл. 5.16 приведены основные данные и рекомендации по применению наиболее употребительных проводов.
Для внешних электропроводок в коттеджах используются кабели и провода как с медными, так и алюминиевыми жилами. К внешним электропроводкам относятся: ответвления от воздушных линий, вводы в дома и электрические сети на приусадебных участках. Здесь находят применение как неизолированные провода (например, марки А) сечением не менее 16 мм2, так и кабели, часть из которых учтена в табл. 5.15.
3 Правила устройства электроустановок. М, 1998. 6-е изд. перераб. и доп. (п.п. 1.3.10 и 1.4.16)
Таблица 5.15 Основные данные и рекомендации по прокладке наиболее употребительных силовых кабелей с медными жилами напряжением до 1 кВ для внутренних электропроводок
Тип, марка кабеля |
Краткая характеристика |
Изоляция |
Оболочка |
Число жил |
Сечение жил, мм2 |
Напря жение, В |
Рекомендации по способам прокладки |
Примечание |
ВВГ |
Поливинилхлоридная |
Поливинилхлоридная |
1 |
1,5-50 |
660, 1000 |
Открыто — по конструкциям и в коробах Скрыто — в трубах |
Применяется во внешних электропроводках: ответвления от ВЛ на опорах по территории |
|
2 |
1,5-50 |
|||||||
3 |
1,5-240 |
|||||||
4 |
1,5-185 |
|||||||
5 |
1,5-25 |
|||||||
ВВГнг |
Понижен ной горючести |
Поливинилхлоридная |
Поливинилхлоридная |
2 |
1,5-10 |
660 |
Открыто — по конструкциям и в коробах Скрыто — в трубах |
|
4 |
1,5-10 |
|||||||
ВВГ-П |
То же, плоский |
Поливинилхлоридная |
Поливинилхлоридная |
2 |
1,5-16 |
660 |
||
3 |
1,5-4 |
|||||||
ПВГ |
Полиэтиленовая |
Поливинилхлоридная |
1 |
1,5-10 |
660 |
Открыто — по конструкциям и в коробах Скрыто — в трубах |
Применяется во внешних электропроводках — на опорах по территории |
|
2 |
1,5-10 |
|||||||
3 |
1,5-10 |
|||||||
4 |
1,5-10 |
|||||||
NYM |
С промежуточной оболочкой из резины |
Поливинилхлоридная |
Поливинилхлоридная |
2 |
1,5-6 |
300, 500 |
Открыто — по конструкциям и в коробах Скрыто — в трубах |
|
3 |
1,5-10 |
|||||||
4 |
1,5-16 |
|||||||
5 |
1,5-25 |
|||||||
ВРГ |
Резиновая |
Поливинилхлоридная |
1 |
660 |
Применяется во внешних электропроводках — ответвления от ВЛ на опорах по территории |
|||
2 |
||||||||
3 |
||||||||
4 |
||||||||
НРГ |
Оболочка не горючая |
Резиновая |
Резиновая |
1 |
1,5-10 |
660 |
Применяется во внешних электропроводках — ответвления от ВЛ на опорах по территории |
|
2 |
1,5-10 |
|||||||
3 |
1,5-10 |
|||||||
4 |
1,5-10 |
Таблица 5.16 Основные данные и рекомендации по применению наиболее употребительных проводов с медными жилами напряжением до 1 кВ для внутренних электропроводок
Тип, марка провода |
Краткая характеристика |
Изоляция |
Оболочка |
Число жил |
Сечение жилы, мм2 |
Напряжение, В |
Рекомендации по применению |
|
категория помещений |
способы прокладки |
|||||||
ПВ1 |
Не гибкий |
Поливинилхлоридная |
1 |
0,5-10 16-95 |
450 |
Сухие, влажные, сырые, особо сырые |
Скрыто — в трубах, в пустотных каналах несгораемых строительных конструкций |
|
ПВ2 |
Нормальной гибкости |
1 |
2,58-95 |
|||||
ПВ3 |
Повышенной гибкости |
1 |
0,5-95 |
|||||
ПВ4 |
Высокой гибкости |
1 |
0,5-10 |
|||||
ППВ |
Плоский, с разделительным основанием |
Поливинилхлоридная |
2 и 3 |
0,75-4,0 |
450 |
Сухие, влажные, сырые |
Открыто — в коробах |
|
ПВС |
Гибкий, со скрученными жилами |
Поливинилхлоридная |
Поливинилхлоридная |
2, 3, 4, 5 |
1,5-2,5 |
380 |
Сухие, влажные, сырые |
Открыто — в коробах Скрыто — в трубах |
ПУНП |
Пластмассовая |
Поливинилхлоридная |
2 и 3 |
1,0-6 |
250 |
Сухие, влажные, сырые |
Открыто — в коробах Скрыто — под штукатурку |
|
ПУГНП |
Гибкий |
Пластмассовая |
Поливинилхлоридная |
2 |
1,5-2,5 |
250 |
Сухие, влажные, сырые |
Открыто — в коробах Скрыто — под штукатурку |
ПРТО |
Оплетка из хлопчатобумажной пряжи, пропитанная проти- вогнилост- ным составом |
Резиновая |
1, 2 и 3 |
0,75-120 |
660 |
Сухие, влажные, сырые |
Скрыто — в несгораемых трубах |
|
ПР |
Резиновая |
Резиновая |
1 |
1,5-10 |
660 |
Сухие, влажные, сырые |
Скрыто — в пустотных каналах несгораемых строительных конструкций |
|
ПРТ |
Гибкий |
|||||||
ПРН |
Не распространяющий горение |
Резиновая |
Резиновая |
1 |
1,5-120 |
660 |
Сухие, влажные, сырые |
Скрыто — в пустотных каналах несгораемых строительных конструкций Открыто — на открытом воздухе |
ПРГН |
То же, гибкий |
Резиновая |
Резиновая |
1 |
1,5-120 |
660 |
Расчет мощности
Самый простой способ – это рассчитать суммарную мощность, которую будет потреблять дом или квартира. Этот расчет будет использован для подбора сечения провода от столба ЛЭП до вводного автомата в коттедж или от подъездного щита в квартиру на первую распределительную коробку. Точно так же рассчитываются провода по шлейфам или комнатам. Понятно, что входной кабель будет иметь самое большое сечение. И чем дальше от первой распределительной коробки, тем данный показатель будет уменьшаться.
Но вернемся к расчетам. Итак, в первую очередь необходимо определить суммарную мощность потребителей. У каждого из них (бытовые приборы и лампы освещения) на корпусе этот показатель обозначен. Если не нашли, смотрите в паспорте или в инструкции.
Мощность потребления некоторых электроприборов
После чего все мощности необходимо сложить. Это и есть суммарная мощность дома или квартиры. Точно такой же расчет необходимо сделать и по контурам. Но тут есть один спорный момент. Некоторые специалисты рекомендуют умножить суммарный показатель на понижающий коэффициент 0,8, придерживаясь того правила, что не все приборы будут одновременно включаться в цепь. Другие же, наоборот, предлагают умножить на повышающий коэффициент 1,2, тем самым создавая некий запас на будущее, ввиду того, что есть большая вероятность появления в доме или квартире дополнительных бытовых приборов. По нашему мнению второй вариант – оптимальный.
Выбор кабеля
Теперь, зная суммарный показатель мощности, можно выбрать и сечение проводки. В ПУЭ установлены таблицы, по которым легко сделать этот выбор. Приведем несколько примеров для электрической линии, находящейся под напряжением 220 вольт.
- Если суммарная мощность составила 4 кВт, то сечение провода будет 1,5 мм².
- Мощность 6 кВт, сечение 2,5 мм².
- Мощность 10 кВт – сечение 6 мм².
Точно такая же таблица есть и для электрической сети напряжением 380 вольт.
Сечение кабеля для открытой электропроводки
Чтобы воспользоваться таблицами и правильно выбрать сечение кабеля для дома или квартиры, нам необходимо знать силу тока, или знать мощность всех бытовых электроприемников.
Ток рассчитывается по следующим формулам:
– для однофазной сети напряжением 220 Вольт:
где Р – сумма всех мощностей бытовых электроприемников, Вт;
U – напряжение однофазной сети 220 В;
cos(фи) – коэффициент мощности, для жилых зданий равен 1, для производства будет 0.8, а в среднем 0,9.
– для трехфазной сети напряжением 380 Вольт:
в этой формуле все тоже самое, как и для однофазной сети, только в знаменатель, т.к. сеть трехфазная, добавляем корень 3 и напряжение будет равно 380 В.
Чтобы выбрать сечение кабеля для дома или квартиры, по вышеуказанным таблицам, достаточно знать сумму мощностей электроприемников данной кабельной линии (группы). Расчет тока все равно нам будет нужен при проектировании электрощита (выбор автоматов, УЗО или диф.автоматов).
Ниже приведены средние значения мощностей, наиболее распространенных бытовых электроприемников:
Зная мощность электроприемников, можно точно выбрать сечение кабеля для конкретной кабельной линии (группы) в доме или квартире, а значит и автомат (дифавтомат) для защиты этой линии, у которого номинальный ток должен быть ниже длительно-допустимого тока кабеля, определенного сечения. Если мы выбираем сечение кабеля из меди 2,5 кв.мм., который проводит сколько угодно долго ток до 21 А (скрытый способ прокладки), то автомат (дифавтомат) в электрощите для этого кабеля должен быть с номинальным током на 20 А, чтобы автомат отключался до того, как кабель начнет перегреваться.
Типовые сечения кабелей для электромонтажа в быту:
- В квартирах, коттеджах или частных домах, на розеточные группы прокладывают медный кабель 2,5 кв.мм.;
- Для осветительной группы – сечение кабеля из меди 1,5 кв.мм;
- Для однофазной варочной поверхности (электроплиты) – сечение кабеля 3х6 кв.мм., для трехфазной электроплиты – 5х2,5 кв.мм. или 5х4 кв.мм. в зависимости от мощности;
- Для остальных групп (духовые шкафы, бойлеры и т.д.) – по их мощности. А также от способа подключения, через розетку или черех клеммы. Например, если мощность духового шкафа более 3,5 кВт, то прокладывают кабель 3х4 и подключают духовку через клеммы, если мощность духовки меньше 3,5 кВт, то достаточно кабеля сечением 3х2,5 и подключение через бытовую розетку.
Чтобы правильно выбрать сечение кабеля и номиналы автоматов для электрощита частного дома, квартиры, нужно знать важные моменты, не знание которых, может привести к печальным последствиям.
Например:
- На розеточные группы выбирают сечение кабеля 2,5 кв.мм, но автомат при этом выбирают, с номинальным током не 20А, а 16А, т.к. бытовые розетки рассчитаны на ток не более 16 А.
- Для освещения использую кабель 1,5 кв.мм., но автомат не более 10А, т.к. выключатели рассчитаны на ток не более 10А.
- Необходимо знать, что автомат пропускает ток до 1,13 раза больше своего номинала, сколько угодно долго, а при превышении номинала до 1,45 раза может отключиться только через 1 час. И всё это время кабель будет греться.
- Сечение кабеля правильно выбирать по скрытому способу прокладки, чтобы был необходимый запас прочности.
- ПУЭ п.7.1.34. запрещает использовать алюминиевую проводку внутри зданий.
Спасибо за внимание
Расчет сечения кабеля
Вычисление выбора сечения происходит по определенным алгоритмам.
Что необходимо для расчета по нагрузке и мощности
Расчет ведется за 2 этапа: для начала высчитывается суммарная мощность приборов, после чего происходит выбор сечения кабеля по мощности.
Это требует получения предварительных показателей:
- Расчет суммарной мощности приборов, подключаемых к сети. Прежде всего, это стационарно: постоянно или часто, работающие устройства: холодильник, электроплита, чайник, освещение, у многих – компьютер. Следует учитывать также более редко подключаемые электроприборы: утюг, пылесос, фен, кондиционер и другие.
- Выяснение штатного напряжения сети: 220 в или 380 в.
- Определение, какой материал использован для сердечника. Медь или алюминий.
- Проектирование варианта проводки: скрытая, поверхностная.
На 1 шаге вычисляется сумма мощностей ΣP = (P₁ + Р₂ + … + Рₙ) · Кс · Кз.
Кс – коэфф. спроса, он показывает насколько вероятно подключение всех в один и тот же отрезок времени, Кз – коэфф. запаса. Учитывает добавление новых устройств.
Выбор сечения кабеля по мощности
На 2ом этапе делается подбор кабеля по подходящему сечению по параметру мощности.
Удобно использовать таблицу из Правил — ПУЭ. В нее сведены показатели по типу проводки, материалам электропроводящих жил и др.
В Таблице ПУЭ можно определять сечение кабеля по мощности.
Соотношение тока и сечения
Вышеописанная таблица из ПУЭ позволяет проанализировать, как нагрузки соотносятся с площадью сечения. Нагрузка выражена в силе тока исходя из пересчета на одножильный вариант.
Расчет сечения кабеля по току происходит раздельно для сети в 220 в и для трехфазной в 380 в.
Таблица представляет виды кабеля с распространенными вариантами изоляции – резиновой и полимерной. Для бумажных изолирующих слоев, а также неизолированных проводов, есть всои таблицы соотношения сечения и силы тока.
При выборе проводится корректировка с использованием поправочных коэффициентов, связанных с местом проводов в блоке, с тепловыми нагрузками, с различным числом рядом расположенных кабелей и т.д.
Правила расчета по длине
Предварительная информация, нужная в подсчетах:
- Метраж провода. Обозначение длины — L.
- Удельное сопротивление металла, это зависит от того, что за провода задействуются. Обозначение – ρ. Измеряется в Ом/мм2·м:
- Номинальная сила тока. Обозначается – I. Измеряется в А.
Для начала выясняется, какова номинальная сила тока.
I = (P · Кс) / (U · cos ϕ) P – суммарная мощность. Измеряется в ваттах. U – 220. Единица измерения – Вольты. Кс – коэфф. спроса. cos φ – 1 для бытовых приборов |
Затем переходят к выяснению величины сечения с точки зрения длины.
R = ρ L/S Учитывается такой показатель, как потеря напряжения по длине. Он не может выходить за пределы 5%. |
Эта схема просчета сечения кабеля по длине приведена для случаев одножильных проводов. Их еще называют однопроволочными или «монолитами». Если же работа идет с многожильными вариантами, длину следует считать, суммируя длины всех жил.
Для расчета сечения промеряют провод, применив какой-либо из трех методов, описанных ранее в соответствующем разделе.
Расчет сечения медных проводов и кабелей
Нужно учитывать ряд показателей. Пожалуй, наиболее ответственный из них — материал, использованный при производстве проводников. Нагрузка по потребляемой мощности существенно различается.
Сечение медного провода по мощности можно установить по таблицам ПУЭ. Для кабеля с медным сердечником.
Расчет сечения алюминиевых проводов и кабелей
Для алюминиевых токопроводящих сердечников подсчеты проводятся аналогично медным проводникам. Различия определяются свойствами металлов.
Таблица ПУЭ. Для кабеля с алюминиевым сердечником.
Как узнать мощность?
Мощность измеряется в ваттах, киловаттах (Вт, кВт, w, kWt). На каждом современном электрооборудовании (бытовом и промышленном) мощность указывается на бирке наряду с остальными характеристиками изделия. Если данный параметр по каким-либо причинам отсутствует, рекомендуем воспользоваться Таблицей 1.
Таблица 1 – усредненные значения мощностей бытовых электроприборов:
Электроприбор | Усредненная мощность, Вт | |
1. | Бойлер | 1500 |
2. | Водонагреватель (проточный) | 5000 |
3. | Газонокосилка | 1500 |
4. | Дрель | 800 |
5. | Духовка | 2000 |
6. | Камин масляной | 900 |
7. | Компьютер (ноутбук) | 500 |
8. | Микроволновая печь | 1500 |
9. | Насос водяной | 1000 |
10. | Сварочный аппарат | 2500 |
11. | Стиральная машина | 2500 |
12. | Перфоратор | 1300 |
13. | Принтер | 500 |
14. | Телевизор | 300 |
15. | Тостер | 800 |
16. | Холодильник | 700 |
17. | Фен бытовой | 1200 |
18. | Фен промышленный | 1500 |
19. | Электрическая жаровня (духовка) | 2000 |
20. | Электрическая плита | 2000 |
21. | Электрический чайник | 1400 |
Что будет, если неправильно рассчитать сечение
Корректный расчет сечения означает учет всех факторов, влияющих на энергопотребление, в также воздействие меняющихся условий. Например, проведение ремонта нередко требует увеличения мощностей, чтобы подключать новые приборы. Нагрузка возрастает, а сети остаются прежними – это реальная причина возникновения аварий и возгораний.
При расчете сечения кабеля, нужно предусматривать возможность излишнего нагрева провода. Когда выбрано слишком малое сечение электропроводника, растет вероятность нарушения изолирующей пластмассовой защитной оболочки, возможно ее воспламенение. От провода начинают тлеть, а потом загораются окружающие материалы. Может возникнуть задымление и выход в окружающую среду вредных веществ — продуктов горения пластмасс и других видов химических материалов, образующих изолирующую оболочку. В том случае, если возгорание не происходит, а только нарушается защитный слой, оголяется токопроводящий сердечник — это опасно для взрослых, детей и животных. Прикоснувшись к оголенному проводу легко получить удар тока. Это относится к открытому типу проводки.
В условиях скрытой проводки, возникают не меньшие проблемы. При коротком замыкании жила размыкается и перестает передавать электроэнергию. Чтобы провести самостоятельно ремонтные работы, приходится штробить стену и восстанавливать поврежденный участок. Отсюда — рост затрат на ремонтные работы.
Если кабель по площади поперечного среза оказался больше, чем требуется для энергоподачи, это вызывает увеличение затрат и усложняет работы по монтажу сетей. «Толстый» кабель подойдет не ко всем розеткам, придется подбирать их специально под провода.
Тепловой расчет с использованием поправочных коэффициентов
Для нескольких линий в одном кабель-канале табличные значения максимального тока следует умножить на соответствующий коэффициент:
- 0.68 — для числа проводников от 2-х до 5 шт.
- 0.63 — для проводников от 7 до 9 шт.
- 0.6 — для проводников от 10 до 12 шт.
Коэффициент относится именно к проводам (жилам), а не к количеству проходящих линий
При расчете количества проложенных жил не берется во внимание нулевой рабочий провод или заземляющий провод. Согласно ПУЭ и ГОСТ 16442-80 они на нагрев проводов не влияют при прохождении нормальных токов. Суммируя вышесказанное, получается, что для корректного и точного подбора сечения проводов необходимо знать:
Суммируя вышесказанное, получается, что для корректного и точного подбора сечения проводов необходимо знать:
- Сумму всех максимальных мощностей электроприборов.
- Характеристики сети: количество фаз и напряжение.
- Характеристики материала для кабеля.
- Табличные данные и коэффициенты.
При этом мощность не является основным показателем для отдельной линии кабеля или всей внутренней системы электроснабжения. При подборе сечения обязательно следует рассчитать максимальный ток нагрузки, а после сверить его с номинальным током автомата домашней сети.