10 теорий конца вселенной

Как доказать бесконечность Вселенной?

Космология Джордано Бруно

Джордано Бруно стал одним из первых, кто попытался ответить на вопрос: бесконечна ли Вселенная с точки зрения философии — и доказать это в своих трактатах: «Пир на пепле», «О бесконечном, Вселенной и мирах». Однако его аргументы пересекались с теологией и основывались на божественном начале:

  1. Первое доказательство: принцип полноты. Если бог, сотворивший Вселенную, всемогущ и бесконечен, то и Вселенная бесконечна.
  2. Второе доказательство: принцип отсутствия основания. Если бог сотворил мир в одной точке пространства, то сотворил его в и в другой.
  3. Третье доказательство: вне Вселенной ничего нет, поэтому ничто не может её ограничить.

Эти выводы Бруно приводил с точки зрения философии и теологии, поэтому они имеют не научное, а культурное и историческое значение. Современная же наука хочет ответить на вопрос: бесконечна ли Вселенная с точки зрения математики и философии.

Памятник Джордано Бруно в Италии

Современная космология. Расширяющаяся Вселенная

На данный момент учёные доказали, что правильная модель Вселенной — расширяющаяся Вселенная, а не стационарная, как считалось столетиями до XX века. Это открытие совершил Эдвин Хаббл на основании эффекта Доплера (красное смещение).

Величина красного смещения пропорциональна расстоянию — чем дальше галактика, тем быстрее она удаляется от нас. Все галактики имеют красное смещение. Это означает, что все они удаляются от нас. Следовательно, Вселенная расширяется.

Красное смещение: принцип действия

Однако долгое время считалось, что Вселенная стационарна. Главная теория, на которой строится современная космология, — Общая Теория Относительности, — предполагает, что Вселенная стационарна.

Теоретически доказать обратное смог Александр Фридман, что после экспериментально подтвердил своим открытием Эдвин Хаббл.

Модели Фридмана

На основе ОТО Альберта Эйнштейна Александр Фридман сделал два предположения:

  • Вселенная выглядит одинаково при наблюдении в любом направлении;
  • Это справедливо при наблюдении из любой точки пространства;

Благодаря этим предположениям были созданы модели Вселенной, которые можно разделить на два типа:

  1. Если средняя плотность вещества меньше или равна определённому критическому значению, то идея бесконечности Вселенной подтвердится. В этом случае её сегодняшнее расширение будет продолжаться вечно.
  2. Если средняя плотность больше критической, то создаваемое веществом гравитационное поле заставит Вселенную замкнуть саму себя. Она будет конечной, но неограниченной, как сферическая поверхность. Затем гравитационные поля остановят расширение Вселенной и заставят её перейти в состояние сингулярности.

Критическая плотность пропорциональна квадрату параметра Хаббла. Если взять значение 15 км/с на миллион световых лет, получится критическая плотность, равная 5×10^30 грамм на кубический сантиметр, или три атома водорода на тысячу литров космического пространства.

Современные модели Вселенной (космологические теории)

Ускорение расширяющейся Вселенной

Вселенная не просто расширяется — она расширяется с ускорением. Это открытие было сделано в конце 1990-х Солом Перлмуттером, Брайаном П. Шмидтом и Адамом Риссом при наблюдении сверхновых типа Ia. Яркость взрыва этих звёзд практически неизменна, поэтому по яркости света с Земли можно определить расстояние, на котором взрыв произошёл.

Другой способ определения расстояния — эффект Доплера (красное смещение). Результаты должны быть одинаковы, однако расстояние, вычисленное при помощи сверхновых Ia, превышало значение, определённое по методу красного смещения. Единственным объяснением было то, что Вселенная расширяется с ускорением.

На данный момент исследования в области космологии продолжаются. Одни учёные защищают бесконечность времени и пространства вселенной, другие — конечность. Но каким образом можно доказать истинность той или иной точки зрения?

Наиболее популярная модель нашей Вселенной, включающая темную энергию. Первые 6-7 млрд. лет галактики двигались с замедлением, далее вышли на равномерное, а затем ускоренное движение.

Будущее Вселенной

Теория возникновения Вселенной путем Большого взрыва официально признана в научном мире. Согласно ее основным утверждениям, космическое пространство все еще продолжает эволюционировать  и на смену одним структурам приходят абсолютно новые. Существуют две противоположные версии дальнейшего развития событий:

  • Большой разрыв. Если Универсум и дальше
    продолжит расширяться, то в дальнейшем гравитационное взаимодействие между его
    элементами начнет стремительно ослабевать. Произойдет распад галактик и их
    скоплений. После этого распадутся отдельные звездные системы, где гравитация
    звезды не в силах будет удержать планеты вокруг себя. Постепенно все элементы
    Вселенной разрушаться вновь до элементарных частиц, законы физики перестанут
    иметь смысл. Что произойдет дальше – предсказать невозможно.
  • Большое сжатие. В этом сценарии
    описывается предположение, что космическое пространство постепенно замедлит
    свое расширение и начнет обратно сжиматься. Все его элементы образуют единое мега
    скопление, в котором будет продолжаться процессы рождения, эволюции и смерти
    галактик. Однако, вещество будет сжиматься и далее, что приведет к образованию
    одной гигантской галактики. Космическое пространство вновь начнет нагреваться,
    реликтовое излучение разрушит планеты и звезды. Все структуры перейдут в
    состояние элементарных частиц. Вселенная приобретет свой первоначальный вид до
    Большого взрыва.

Любой из основных
сценариев смерти Вселенной в нынешнем ее состоянии предполагает распад всех ее
структур до фундаментальных частиц и прекращения любых сил взаимодействия. Так
ли оно будет на самом деле, предсказать современной науке невозможно.

Где же антиматерия?

Другой проблемой, с которой сталкивается идея большого взрыва, есть «проблема барионного числа». Большой взрыв предполагает, что материя (водород и гелиевый газ) была образована из энергии по мере расширения вселенной. Однако экспериментальная физика указывает на то, что всякий раз, когда образовывается материя, должна образовываться и антиматерия.

Антиматерия обладает схожими свойствами с материей, за исключением того, что заряды частиц противоположные. (Так протон имеет положительный заряд, а антипротон имеет отрицательный заряд). В ходе любой, без исключения, реакции, в которой энергия превращается в материю, образуется точно такое же количество и антиматерии.

Большой взрыв (который не имеет изначально никакой материи — только энергию) должен был привести к образованию совершенно равного количества материи и антиматерии. Таким образом, если бы большой взрыв случился на самом деле, во вселенной сегодня должно было бы существовать совершенно равное количество материи и антиматерии. А ее, в действительности, не существует. Видимая вселенная почти полностью состоит из материи, и лишь из ничтожно малого количества антиматерии.

Все это разрушает теорию большого взрыва и является убедительным подтверждением библейского сотворения; это качество разумного замысла. Бог сотворил вселенную, чтобы она в основном состояла только из материи — и это хорошо, что Он так создал. Когда материя сталкивается с антиматерией, они друг друга разрушают. Если бы вселенная имела равные количества материи и антиматерии (как того требует большой взрыв), жизнь была бы невозможна.

О существовании иных цивилизаций

Давайте подумаем, что же может быть в других вселенных. Исходя из гипотез, все они абсолютно идентичны, так как образовались из пустоты.

Единственная разница в них лишь во времени образования, то есть в уровне расширения и в уровне развития цивилизаций.

Возникает новая проблема. Существа и цивилизации из старших миров могут быть развиты на столько, что смогут реализовать технологии, позволяющие преодолеть границы вселенных.  Преодоление границ приведет к изменениям вселенных, нарушению их развития, ускорению либо замедлению в развитии. А возможно они смогут создавать свои вселенные, что нарушит систему устройства мира.

Вероятно, что если все в мире предопределено, то человечество может быть только одно. Однако во всем мире существует бесчисленное число копий нашей вселенной, поэтому и в мире существуют копии людей.

В итоге мы подошли к тому, что мир бесконечен повсюду и существует огромное количество одинаковых вселенных. В таком случае возникает вопрос о том, кто же создал это ничто, было ли оно всегда.

Нет четкого ответа на этот вопрос, ибо человеческий разум ограничен трехмерным пространством и мы не можем увидеть мир со всех сторон.

Запись Творца

Сам Творец дал нам историческую запись Его созидательных актов сотворения. К сожалению, многие люди склонны игнорировать Его Слово. Вместо этого они полагаются на мирскую философию для объяснения того, что происходило в прошлом, а это противоречит записанной истории и свидетельствам её очевидцев.

Можете ли вы представить, что люди начнут применять подобное мышление к другим областям исследований? Что если бы историки перестали принимать записанную историю и заявили бы, что Первая мировая война никогда не имела места, поскольку их философия не допускает события мировой войны? Было бы это разумно?

В наши дни среди людей довольно распространено отрицание возможности сверхъестественного библейского сотворения просто потому, что они охвачены философией натурализма — веры в то, что «природа – это все, что существует».

Энергия пустого пространства

В пустом пространстве, в ничто. Звучит, конечно, глупо, но пустое пространство не такое уж и пустое. Вот так выглядит то, что происходит внутри протона: постоянно что-то бурлит, появляются и исчезают различные частицы:

Мы не «видим» их, потому что они возникают на очень непродолжительное время, но при этом они составляют основную часть массы протона. А раз так, то, возможно, они появляются в открытом пространстве и дают какую-то энергию. Может быть, вакуум тоже что-то весит?

Еще когда я учился в университете, было предположение, что энергия вакуума — это единица со 120 нулями, но этого просто не может быть: будь это так, Вселенная была бы другой и нас бы просто не существовало. Мы ждали какого-то математического чуда, которое бы позволило нам сократить это число; предполагали даже, что энергия пустого пространства равна нулю. А затем решили не полагаться на теоретиков: если у пустого пространства есть энергия, ее можно измерить. Но как?

Гравитация в большинстве случаев притягивает объекты друг к другу, но вакуум создает антитяготение. Чтобы рассчитать его, необходимо понять, расширяется ли наша Вселенная с ускорением или с замедлением. Первые попытки определить это сделал Эдвин Хаббл в 1929 году, но сейчас мы знаем, что его расчеты были неверны из-за того, что, в частности, не учитывали эволюцию галактик и связанные с ней изменения светимости. Так что нам нужны были какие-то другие объекты с известной яркостью.

Это изображение галактики, расположенной в 7 млн световых лет от нас. В левом нижнем углу виден яркий объект — можно предположить, что в кадр случайно попала звезда из нашей Галактики, но нет: это сверхновая, которая светится как сто миллиардов звезд. Потом она тускнеет, но в первый месяц она светится с яркостью, которая нам известна. Сверхновые появляются в Галактике примерно раз в сто лет. Можно выдать каждому студенту по галактике, и пусть постоянно смотрит на нее — за сто лет как раз напишет диссертацию. Но на самом деле галактик очень много: если соединить пальцы в кружок размером с пятирублевую монету и посмотреть через него на небо, в этом кружочке будут сотни галактик. А значит, в небе постоянно взрываются сверхновые, так что мы легко можем использовать их, чтобы рассчитывать расстояния до отдаленных галактик и скорости, с которыми эти расстояния увеличиваются. Эти расчеты были проведены в 1998 году, и результатом стал вот такой график:

Если бы темпы расширения Вселенной были одинаковыми, то в его нижней части была бы просто прямая линия. Астрономы ожидали, что все сверхновые будут либо на этой линии, либо ниже. Но большая часть таких звезд оказалась выше линии — это могло быть только в том случае, если бы темпы расширения Вселенной увеличивались.

А чтобы Вселенная расширялась, нужно как раз столько энергии, сколько нам не хватало, — те самые 70%. Тогда все сходится. В 2011 году Нобелевскую премию по физике получили ученые, обнаружившие, что

Вероятно, это как-то связано с самой природой пространства и времени и причинами возникновения Вселенной. Но теперь понятно, что ее будущее будет определяться не материей и даже не геометрией, а энергией пустого пространства.

Что называют реликтовым излучением

В космологии под реликтовым излучением понимают – космическое микроволновое фоновое излучение. Данное понятие ввел русский астрофизик И.С. Шкловский. Простым языком, реликтовое излучение – это слабое свечение, которое заполняет все пространство Вселенной, попадая при этом на Земной шар и другие объекты космоса. Это то, что осталось от процесса «строительства Вселенной», с того момента, как она начала только зарождаться. Излучение течет в пространстве, в течение последних 13,5 млрд. лет, напоминая чем-то тепло от камина, огонь в котором уже давно погас.

По сути, реликтовое излучение – это электромагнитные волны, которые растеклись по космическому пространству. Ученые предполагают, что оно образовалось примерно 380 тыс. лет после Большого Взрыва. Есть мнение, что реликтовое излучение способно объяснить образование первых звезд и галактик.

Увидеть излучение невооруженным глазом человек не может. Для его изучения используют специальные радиотелескопы. На сегодняшний день известно, что температура реликтового излучения на 2,725 градусов выше абсолютного нуля, следовательно, оно очень холодное. Несмотря на то, что плотность энергии реликтового излучения всего 0,25 эВ/см3, оно заполняет все космическое пространство. Его главное свойство однородность, что позволяет ученым интерпретировать его как остаточное явление после Большого Взрыва. Если бы человеческие органы могли воспринимать микроволны, то небо для нас сияло равномерным приятным светом.

В современной космологии открытие реликтового излучения имеет важное значение. Благодаря свету, распространение которого происходит с конечной скоростью, исследователи могут наблюдать за самыми далекими космическими телами и структурами, то есть заглядывать в прошлое Вселенной

Многие звезды, которые видны человеку невооруженным глазом, находятся на расстоянии 10-100  световых лет. Именно столько времени необходимо свету, чтобы добраться до Земного шара. То есть, наблюдая за звездным небом, человек видит его таким, каким оно было как раз 10-100 световых лет назад. Астрономы активно изучают ближайшую к нам галактику – Андромеду, но при этом в настоящем времени они видят ее такой, какой она была 2,5 млрд. лет назад. Благодаря физическим свойствам реликтового излучения человечество способно шагнуть в далекое прошлое и «увидеть», какой именно была Вселенная после Большого Взрыва.

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты.

Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Что было до появления Вселенной

Сложно представить время за 13,7 миллиардов лет до сегодняшнего дня, когда вся Вселенная представляла собой сингулярность. Согласно теории Большого взрыва, один из главных претендентов на роль объяснения того, откуда появилась Вселенная и вся материя в космосе — все было сжато в точку, меньшую, чем субатомная частица. Но если это еще можно принять, задумайтесь вот о чем: что же было до того, как случился Большой взрыв?

Этот вопрос современной космологии уходит корнями еще в четвертое столетие нашей эры. 1600 лет назад теолог Августин Блаженный как и один из лучших физиков 20 века Альберт Эйнштейн пытались понять природу  до сотворения Вселенной. Они пришли к выводу , что просто не было никакого «до».

В настоящее время человеком выдвигаются различные теории.

Теория Мультивселенной

Что если наша Вселенная является потомком другой, старшей Вселенной? Некоторые астрофизики полагают, что пролить свет на эту историю поможет реликтовое излучение, оставшееся от большого взрыва.

Согласно этой теории, в первые мгновения своего существования Вселенная начала чрезвычайно быстро расширяться. Также теория объясняет температуру и плотность флуктуаций реликтового излучения и подсказывает, что эти флуктуации должны быть одинаковыми.

Но, как выяснилось, нет. Последние исследования дали понять, что Вселенная на самом деле однобока, и в некоторых областях флуктуаций больше, чем в других. Некоторые космологи считают, что это наблюдение подтверждает, что у нашей Вселенной была «мать»(!)

В теории хаотической инфляции эта идея приобретает размах: бесконечный прогресс инфляционных пузырьков порождает обилие вселенных, и каждая из них порождает еще больше инфляционных пузырьков в огромном количестве Мультивселенных.

Теория белых и черных дыр

Тем не менее, существуют модели, которыми пытаются объяснить образование сингулярности до большого взрыва. Если вы думаете о черных дырах как о гигантских мусоросборниках, они являются главными кандидатами первоначального сжатия, поэтому наша расширяющаяся Вселенная вполне может быть белой дырой — выходным отверстием черной дыры, и каждая черная дыра в нашей Вселенной может вмещать в себя отдельную вселенную.

Большой скачок

Другие ученые считают, что в основе формирования сингулярности лежит цикл под названием «большой скачок», в результате которого расширяющаяся вселенная в итоге коллапсирует сама в себя, порождая другую сингулярность, которая, опять же, порождает другой большой взрыв.

Теория циклической Вселенной

Последнее объяснение, которое мы рассмотрим, использует идею циклической Вселенной, порожденной теорией струн. Она предполагает, что новая материя и потоки энергии появляются каждые триллионы лет, когда две мембраны или браны, лежащие за пределами наших измерений, сталкиваются между собой.

Что было до Большого взрыва? Вопрос остается открытым. Может быть, ничего. Может, другая Вселенная или другая версия нашей. Может, океан Вселенных, в каждой из которых — свой набор законов и констант, диктующих природу физической реальности.

Вселенная Фридмана

Фридман допускал, что Вселенная имеет совершенно одинаковый вид во всех направлениях и данное условие характерно для всех ее точек. Исходя из этого и учитывая общую теорию относительности, ученый дал понять, что не стоит ожидать от Вселенной стационарности.

Если посмотреть на небосвод, можно увидеть светящуюся полосу – нашу Галактику Млечный путь. Сфокусировав свой взгляд на более отдаленных галактических системах, видно, что в разных частях космического пространства их число будет примерно одинаковым. Исходя из этого, можно говорить об относительной однородности Вселенной.

Модель Вселенной Фридмана была одной из самых удачных. Кроме того, она соответствовала наблюдениям Хаббла. Однако в западных странах о ней услышали только в 1935 г, после того, как подобные модели были разработаны Говардом Робертсоном и Артуром Уокером. Несмотря на то, что Вселенная Фридмана имела только одну модель, на ее основе можно построить еще три других:

  • расширение Вселенной по Фридману настолько медленное, что силы притяжения между галактическими пространствами еще сильнее замедляют его, а со временем вообще останавливают. После этого галактики устремляются навстречу друг к другу, то есть запускается процесс сжатия космического пространства.Расширяющая Вселенная Фридмана достигает определенного максимума, а потом начинает снова возвращаться в начальную точку;
  • вторая космологическая модель Вселенной Фридмана гласит, что расширение космического пространства происходит с незначительной скоростью. Ее хватает лишь для того, чтобы не начался обратный процесс сжатия. В данном предположении расширение начинается с начальной точки, но при этом оно всегда растет. Скорость процесса замедляется, но никогда не останавливается;
  • расширение космического пространства происходит с огромной скоростью. Она настолько велика, что гравитационные силы никогда не смогут остановить данный процесс, разве что только слегка замедлить его. Разделение галактик начинается также с определенного нулевого расстояния.

Анализируя все вышесказанное, можно сделать вывод: модель Фридмана рассказывает, что Вселенная не бесконечна в космическом пространстве, но само пространство безгранично. В результате сильных гравитационных сил, пространство искривляется и замыкается, то есть напоминает чем-то сферическую форму Земного шара. Если человек путешествует по поверхности планеты в одном и том же направлении, он никогда не встретит препятствие, которое не смог бы преодолеть, кроме того, он никогда не упадет «с края Земли». Рано или поздно он просто вернется в точку, с которой начинал свое путешествие. Примерно такое же пространство изображено в модели нестационарной Вселенной Фридмана.

«Красное смещение» и закон Хаббла

Одним из самых важных научных открытий Хаббла является природа синего и красного гравитационного смещения. С их помощью ученым удается распознать, приближается или удаляется от нас то или иное космическое тело.

В 1929 г Эдвин Хаббл с помощью 100-дюймового телескопа проводил измерение спектральных свойств галактических систем Гершеля и отметил интересный факт. С одной стороны галактики имели много общего с Млечным путем, вот только спектры их самых ярких звезд имели существенные отличия от спектров звезд из нашей Галактики. Все они были сдвинуты в более длинноволновую сторону спектра, то есть в красную. Данное явление Хаббл назвал эффект красного смещения. Ученый заметил, что в пределах одного галактического пространства, красное смещение звезд было более менее одинаковым, а вот с другими галактиками оно имело существенные отличия.

Он выделил закономерность:

Проще говоря: чем дальше расположена наблюдаемая галактика, тем эффект красного смещения будет больше. Так был сформирован закон Хаббла, который изображается формулой:

Постоянная Хаббла представляет собой коэффициент, который входит в состав закона Хаббла. С его помощью связали расстояние до определенной галактической системы или квазара со скоростью их удаления. Измеряется в км/с на мегапарсек (Мпк).Со временем значение постоянной Хаббла регулярно меняется, смысл слова «постоянная» заключается в том, что в определенный момент времени величина Н во всех точках Вселенной будет одинаковой. Изменения связаны с использованием разных методик расчета и с изобретением более новых исследовательских аппаратов. В данный момент значение постоянной 70,1 (км/с)/Мпк.

Согласно закону Хаббла ученым удалось вычислить теоретический возраст Вселенной. Для этого они оценивали величину красного смещения для самых отдаленных объектов Вселенной, зная, что в самом начале все было сжато в единую точку. Самое интересное, что хаббловский возраст Вселенной практически равен тому возрасту, который был рассчитан по космологической модели Фридмана – 13,8 млрд. лет.

Примерно такой же эффект происходит и с красным смещением, но его масштабы куда больше. Чем дальше находится заезда от наблюдателя, тем заметней будет изменение частоты света, исходящего от нее. Во время наблюдения красное смещение представляет собой сдвиг спектральных линий в звездном излучении в красную область спектра.

В космологии еще есть понятие синего смещения, которое представляет собой полную противоположность красному. Если происходит сдвиг спектральных линий в сторону синей области, то это означает, что галактика приближается к нам с определенной скоростью.

Вселенная умрет?

Наука точно не знает. Мы знаем, что он быстро расширяется после Большого взрыва, который произошел 13,8 миллиарда лет назад. Вся энергия и материя, необходимые для образования галактик, звезд, черных дыр, планет … Все во Вселенной родилось из этого «великого взрыва».

Теперь рискнуть узнать, что произойдет через миллионы миллионов лет, значит смешать астрономию с философией. Как мы уже говорили, мы знаем, что Солнце умрет через 5 миллиардов лет, и мы умрем вместе с ним.

Но что будет с остальными звездами? Будут ли галактики двигаться все дальше и дальше друг от друга? Можно ли его неограниченно расширять? Ваша энергия иссякнет? Это бесконечно или конечно? Без сомнения, мы далеки от ответа на все эти вопросы.

В любом случае, теории, которые мы увидим дальше, были сформулированы на основе предсказаний, основанных на массе и энергии Вселенной (включая концепции темной массы и энергии), ее плотности и ее плотности. скорость расширения.

Знания в области термодинамики и астрономии, кажется, указывают на то, что Вселенная фактически умрет. Хотя это во многом зависит от того, что мы подразумеваем под «смертью». Ясно то, что никакая материальная система не может расширяться неограниченно, и если бы это произошло, то наступил бы момент, когда энергия была бы настолько низкой, что не могло бы быть никакой реакции.

Поэтому мы не знаем, как он это сделает, но вроде все указывает на то, что Дни вселенной сочтены. Тем не менее, некоторые теории предполагают, что Вселенная — всего лишь ребенок по сравнению со всеми миллионами и миллионами лет, оставшимися до того, как будет достигнута ее окончательная судьба. Другие, с другой стороны, говорят нам, что мы могли бы быть ближе к концу, чем кажется.

Рекомендуем прочитать: «10 крупнейших звезд Вселенной»

Какой формы Вселенная?

Сегодня с помощью телескопа «Хаббл» мы можем увидеть более 100 миллиардов галактик, и в каждой из них, возможно, сотни миллиардов звезд. Но как все это возникло? Почему есть нечто, а не ничто? Это основной вопрос для многих религий. Кажется, что такую огромную Вселенную кто-то должен был создать, что нельзя все это получить из ничего. Я хочу рассказать, почему это не так, почему все эти галактики и звезды могут возникнуть просто благодаря законам физики.

В 1926 году Эдвин Хаббл узнал, что наша Галактика — не единственная во Вселенной. А спустя еще три года он понял, что другие галактики отдаляются от нас. После этого поразительного открытия сразу стало казаться, что мы в центре Вселенной

Однако наблюдения Хаббла говорят о другом: Вселенная расширяется — неважно, из какой галактики вы за этим наблюдаете

До 1929 года наука считала, что Вселенная статична и вечна. Но коль скоро теперь мы поняли, что она движется, то мы можем узнать, что было с ней в прошлом. У всех галактик единое начало: около 13,8 миллиарда лет назад все они были в одной точке, которую мы называем Большим взрывом. Но что станет с галактиками в будущем? Бесконечно ли расширение? Это вопрос, из-за которого я начал заниматься космологией и вообще пошел в физику.

Есть три варианта геометрии нашей Вселенной: она может быть закрытой, открытой или плоской. Имеется в виду не форма самой Вселенной, а то, как в ней выглядит плоскость, сравнимая с размером самой Вселенной. Например, если нарисовать сколь угодно большой треугольник в плоской Вселенной, то сумма его углов будет равна 180 градусам. В открытой Вселенной линии, по которым движется свет, изгибаются, поэтому сумма углов треугольника будет меньше 180 градусов. А в закрытой Вселенной сумма его углов, наоборот, будет больше 180 градусов.

Согласно теории относительности, закрытая Вселенная будет расширяться, а затем сжиматься обратно и в конце концов схлопнется, открытая Вселенная будет расширяться бесконечно, а плоская сначала будет расширяться, а затем очень постепенно замедлится и остановится. Если мы сможем определить, в какой Вселенной живем, то узнаем и наше будущее. Но как это сделать?

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Журнал Ремо Стайл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: